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ABSTRACT

We investigate the minimal number of matrix-vector

multiplications to approximately solve a linear system. The

minimal number of multiplications depends on the properties of a

class of problems such as symmetry, positive definiteness, and

bound on condition number. For different classes of problems

we obtain the minimum exactly or almost exactly and establish

which algorithms are optimal, that is, attain the minimum.

Furthermore, we obtain quantitative results on how the lack

of certain properties increases the minimum...
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1. INTRODUCTION

Many papers deal with the iterative solution of a large

linear system Ax = b. Typically one constructs an algorithm

which generates a sequence {xk I converging to the solution

a = A- b; the calculation of xk requires k matrix-vector

multiplications and xk lies in a subspace spanned by b, Ab,

k
A b. The algorithm is often chosen to guarantee qood

convergence properties of the sequence (xk}. In some cases,

0 is defined to minimize some measure of the error in a restrictive

class of algorithms. For instance, let this class be defined

as the class of "polynomial" algorithms, i.e., a-xk = Wk(A)a,

where Wk is a polynomial of degree at most k and Wk(0) = 1.

Then choosing. Wk as the polynomial minimizing the k-th residual

mr
IfAxk-bjl=11 Wk(A)all, we obtain the minimal residual algorithm, .

If A is symmetric, positive definite and a = 1/1fA 1i 1, b = H1AHI

are known, then choosing Wk as the polynomial minimizing
ch

max{IWk(t)l:t e [a,bl}, we obtain the Chebyshev algorithm, @

It seems to us that this procedure is unnecessarily

restrictive. It is not clear, a priori, why an algorithm has to

construct xk of the form a-xk = Wk(A)a. One might hope that

by not restricitng the class of algorithms it is possible to obtain

better algorithms.

In this paper we do not impose any restriction on the class

of algorithms # which construct xk using the information

Nk(Ab) - [b,Ab,..., A kbJ. Assuming that the matrix A belongs

to a given class of nxn nonsingular matrices F, we measure
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the goodness of an algorithm # by the minimal number of steps

k which are necessary to find xk such that I Axk-blj< c for

a given positive c c (0,1]. (We assume that Ijb[ = 1.)

We define two types of optimality. An algorithm * is said to

be strongly optimal if it requires the minimal number of steps

for every A from the class F. An algorithm * is said to be

optimal if it requires the minimal number of steps for a worst

case A from F. (For the precise definition see Section 2.)

The main result of this paper is that the minimal residual

algorithm is almost strongly optimal provided that the class F

is orthogonally invariant, i.e., A e F implies OAQT e F for

any orthogonal 0. We show that the assumption of orthogonal

invariance is essential. That is, if F is not orthogonally

invariant, then the optimality properties of the *mr algorithm

disappear.

Usually the class F depends on a parameter. For instance,

we consider the classes F1, F2 and F3 of nxn matrices with

condition number bounded by a given M, M 2 1. The class F1

consists of symmetric and positive definite matrices, the class F2

differs from F1 by the lack of positive definitess, and the class

F3 differs from F2 by the lack of symmetry. Note that the

minimal residual algorithm, even though it is almost strongly

optimal for any value of M, does not use M for the construction

of the sequence {x k.

We also prove that if c is not too small, the Chebyshev

algorithm is optimal but not strongly optimal for the class F4

-At li
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of nxn matrices of the form A = I-B where B is symmetric and

Ii BIf ! p with P < 1. In contrast to the previous case, the

*ch algorithm depends essentially on P. We also consider the

class F5 which differs from F4 by the lack of symmetry of

matrices B. We establish the asymptotic optimality of the

successive approximation algorithm for this class.

For all these five classes we find the optimal class index

which is defined as the number of steps required by an optimal

algorithm to find xk with JI Axk-bil < E. We are able to conclude

precisely how the lack of positive definiteness and/or symmetry

increases the optimal class index.

For the optimal algorithms considered in this paper we can

also guarantee that the construction of x k requires a close to

minimal number of arithmetic operations and storage. From these

properties it follows that they are almost optimal complexity

algorithms, i.e. algorithms which minimize the total cost (measured

by the number of arithmetic operations) of finding a vector x

such that 1I Ax-bll < e"

In the first six sections of this paper we consider optimal

algorithms for finding a vector x such that the residual vector

Ax-b has norm less than c. In Section 7 we introduce a family

of approximation criteria for choosing a vector x. We generalize

the previous optimality results. Among our results we show that

the conjugate gradient algorithm is almost strongly optimal, that

if £ is not too small then the Chebyshev algorithm is optimal

(but not strongly optimal) for the class F4 with an arbitrary

choice of the approximation criterion, and the successive approximation

Now
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algorithm is optimal (but not strongly optimal) for the class

F5 for a certain choice of the approximation criterion.

We stress that with a few exceptions the results of this

paper are not asymptotic. That is, we know the exact values of

the optimal class indices to within at most unity for every

e from the interval (0,1]. This is in a sharp contrast to many

results in algebraic complexity where only small c results

can be established.

The problems and proof techniques of this paper follow the

information approach of the monograph by Traub and Woiniakowski

[80]. There are many interesting relations between the optimality

results of this paper and the general results of the monograph.

For the reader's convenience we do not use the general terminology

and results of Traub and Wolniakowski [80).

For simplicity we consider only the real case, although the

generalization to the complex case is straightforward.

We summarize the contents of the paper. Section 2 presents

the basic concepts of strongly optimal, optimal, and almost

strongly optimal algorithms. The minimal residual algorithm is

defined in Section 3.

In Section 4 we establish the main result that the minimal

residual algorithm is almost strongly optimal provided the class

F is orthogonally invariant. In Sections 5 and 6 we find the

optimal class index for five orthogonally invariant classes.

Section 7 deals with generalized criteria. The generalized

minimal algorithm is defined and proven to be almost strongly

optimal. Section 8 deals with the complexity of finding an
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c-approximation. In Section 9 we briefly compare the Gauss

elimination algorithm with the minimal residual algorithm.

In the final section we pose some open problems concerning the

optimality properties of the information studied in this paper.

-
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2. BASIC CONCEPTS

Let F be a subclass of the class of n x n nonsingular

real matrices. Let b be a given nx 1 real vector such that

II b i = /'b(,b) = 1. For a given positive c, c -1 , we seek a

real vector x whose residual has norm less than c, i.e.,

(2.1) 1Ax - bj1 < e, AeF.

We call x an c-approximation. Since b is normalized to unity,

(2.1) measures the relative error of the residual vector. In

Section 7 we discuss the problem of finding x with relative

error less than c in a variety of norms.

To find an c-approximation we need some information about

the matrix A. We define an information operator Nk as

A2 b Akb
(2.2) Nk(Ab) = [b, Ab, b,..., A b

for k= 1, 2,...

Remark 2.1

Let z0 = b, zi = Azi I , for i=l, 2,..., k-i. Then (2.2)

can be rewritten as

(2.3) Nk(A,b) = [z0, Az0, AzI .... Azk-l .

Thus the computation of N k(A,b) requires k matrix-vector

multiplications. If A is sparse Nk(Ab) can be computed in

n2
time proportional to kn rather than kn. Usually instead of

computing Nk(A,b) we compute
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N(A,b) = Lb, Awn, Aw 21. Aw k I

where w~ is a linear combination of b, Ab, A .,A~b for

i = l 2,.. k. It is easy to show that all the results of

this paper also hold for the information operator Nk. I

Remark 2.2

Note that z in (2.3) is a function of previously com-

puted vectors. Thus, N k is an example of an adaptive infor-

mation operator. See Section 9 where we discuss adaptive

information operators in general.U

We define an algorithm # - (# as a sequence of map-

pings *k :Nk (F, Rn ) -IRn . The algorithm 0 generates the

sequence x k M tk(Nk (A,b)) based on the information N k(A~b).

We are interested in the smallest value of k for which x k

satisfies (2.1), i.e., It Ax k - b 11 < ._ in general, there

exist many different matrices X from F which share the same

information as A, i.e., N k(A, b) - N k(W b) . Thus x k *k N k(A~b))

k *(Nk(A~b)) must satisfy (2.1) for A and A.Define

(2.4) V(y k - Ae F, Nk (A. b) - Yk1  y = N A )

Let

(2.5) k(#, A) - mi 1 ~k

be the mtrix index of 6 .(if the set of k in (2.5) is eipty,

we set k (#,A) - 4-w.) Let

(2.6) k (4, F) - sup k(*W A)

ALF
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be the class index of c.

Thus, the matrix index of 0 denotes the minimal number

of steps required to find an c-approximation using the algo-

rithm 0 for all matrices A from F which share the same

information as A. The class index of denotes the same con-

cept for the hardest problem.

We seek algorithms with minimal indices. Let

(2.7) k(A) = min k(4, A)

be the optimal matrix index and let

(2.8) k(F) max k(A) (=min k( , F))
AeF

be the oDtimal class index.

Remark 2.3

It is possible that k(A) << k(F). For instance, assume

that Ab=b. Then, of course, setting xI = *l(yl) =b we have

Ax =b for AcV(yl). Thus k(A)=l for every E. As we shall

see later k(F) can be equal to n.

Thus even if the optimal class index is large. it can hap-

pen, due to favorable properties of A and b, that the optimal

matrix index is small. The algorithms with small matrix index

are therefore very useful for applications. This motivates our

interest in algorithms with small matrix index.

We are ready to introduce two concepts of optimal algorithms.
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An algorithm * is called stronolv optimal iff

(2.9) k(O, A) = k(A), V A e F

and is called optimal iff

(2.10) k(0 , F) = k(F).

We can sometimes establish that the matrix or class index

of an algorithm is slightly larger than the optimal index. It

is convenient to introduce the concepts of almost strongly

optimal algorithm and almost optimal algorithm as follows. An

algorithm 0 is almost strongly optimal iff

(2.11) k( ,A) s k(A) + c V AE F,

and is almost optimal iff

(2.12) k(0, F) s k(F) + c

for some small integer c.

Thus an almost strongly optimal algorithm requires at most

c more steps than a strongly optimal one. Usually k(A) >> c

and therefore an almost strongly optimal algorithm is as use-

ful in practice as a strongly'optimal one.

Remark 2.4

All concepts introduced in this section also depend on the

size n, the information Nk,' the vector b and c. To simplify

notation and terminology we do not make this explicit but the
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reader should keep in mind that all the results are relative to

n, Nk, b and C.

Sometimes we shall need to show the dependence on b.

Then we shall write k( , A, b) and k( , F, b) instead of

k( , A) and k( , F), respectively.

Remark 2.5

In most of this paper we focus on the minimal number ot ste,,w

k(F) required to find an E-approximation. Of course, we also

want to minimize the complexity (the cost) of finding an

c-approximation. In Section 8 we derive very tight bounds on

the complexity of this problem and we show that the complexity

depends primarily on k(F).

We conclude this section by showing that

(2.13) k(F) ! n.

Indeed, assume k=n. Since b, Ab,..., Anb are linearly de-

pendent and A is nonsingular, there exist numbers c1 , c2 .... cn

such that

b = c1 Ab+...+c n A n b = A(c 1 b+...+ cn A n - b).

Setting xn = n (N n(A,b)) = cI b+...+ cn A n - b we find that

II A xn - b I = 0. This implies (2.13). As we shall see later

there exist many interesting classes F for which k(F) is much

less than n for reasonable values of C.

MI ,,I_
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Remark 2.6

We defined k(A) and k(F) as the mimina of k(*, A)

and k(f, F) respectively. From (2.13) we conclude that these

mimina exist. Thus, k(A) and k(F) are well defined. I

A ' I
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3. MINIMAL RESIDUAL ALGORITHM

In this section we derive the minimal residual algorithm.

Let

Nk(A,b) = [z 0 , z1 .... zkI with z i  A b.

Knowing the vectors z. we define c *... c * as the coef-
1 k

ficients which minimize the norm of the residual in the space

spanned by z I, z 2 ..... zk. Thus

(3.1) IIb - c z - ck zk II = min b - - Z
C.

1

mr
The minimal residual algorithm m briefly the mr

algorithm, is defined as

(3.2) Xk ,mr (N(Ab)) = c*b+... ++c Ak - l b .

Note that xk = A - (c* z +...4 ck Z). The vector

c c satisfies the linear equations

k

(3.3) M c = g

where M= ( (zi. zj)) and g= I (z , b ) ,..., (zk'b) ]. The matrix

M is nonsingular iff z., Z2 .... zk are linearly independent.

If zi, z2, .... zk are linearly dependent then b belongs to the

space {z l , .... Zk i ) and Axk = b.

Let P be a polynomial of degree at most k such that

P(O) = 0. Let 11k be the class of such polynomials. Then (3.1)

can be rewritten as

(3.4) 1(1 - P*(A)bII = inf II (I - P(A)) bII
k Pen k
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where P(t)= c1 t +...+ c tk

If A is symmetric and postiive definite then the mr

algorithm is a variant of the conjugate gradient iteration.

(See for instance Stiefel [581.) In this case it is known

that the polynomials

Wk(t) = 1 - k(t), Wk(0) = ( ,

are orthogonal,
. m 2 , *

(3.5) (Wk , W*) = J cj x W W*(x) 0
k i.~ j j kji ii

for k 4 i where

b E c j
J=-,

with being an eigenvector of A associated with the

eigenvalue AV j = j =A ji, i i 2 1, 0 < xI < X < "" m where

m s n and cj 0 for J=1, 2,..., m.

Equation (3.5) implies that

(3.6) (Ark, ri ) = 0

where r = Ax J-b is the residual vector.

There are many efficient ways to compute xk for symmetric

positive definite matrices. For instance xk can be found as

follows. Let x0 = 0. For i =0, 1,..., k-I define
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(3.7) X = x + ! (f x _ xi) _ ri}

where

(Ari  Ar i )

(r i . Ar i )

(3.8)

(r. Ar.)

1 0, f (ri 1 , Ari-1) i-I

The residual vectors r. satisfies a similar recurrence re-1

lation as xi , i.e., ri = r. + -f (r r -

i+1 i q i-1i - r_ 1) Ar

Note that xi+ 1 defined by (3.7) is a linear combination of

b, Ab,..., A b and its computation requires only the know-

ledge of the vectors b, Ab, ..., Ai +l b. See Remark 2.1.

Roundoff-error analysis of a class of conjugate gradient

algorithms including some information on the mr algorithm

can be found in Wofniakowski [80].

Remark 3.1

We assume that the initial approximation x = 0. This0

assumption is not restrictive. Indeed, let x0 be a nonzero

approximation and let c = llb- Ax0 11 j 0. Then we apply the mr

algorithm (3.7) and (3.8) to the system Ax=b' with

b' = (b - Ax 0 )/c. If we find x' such that 11Ax' -b' II < /c

then x - cx' '+ x0 is an c-approximation to the original system

since IIAx-bII .

It
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If A is symmetric then the matrix M in (3.3) is Toeplitz

and a recent algorithm due to Brent [781, and Yun and Gustavson

[79] can be employed to find the vector c* in time proportion-

al to klog2 k.

We end this section by a remark on the matrix index of the

mr algorithm. Let A e V(yk ). (See (2.4)). Then Ai b =Ai b

for i= 1, 2,.... k. Due to (3.2) we have

(3.9) A xk - b = A xk - b, VA V(yk)

and (2.5) can now be simplified to

(3.10) k(,mr ,A) = min(k- IAxk - bl <0.

It is obvious that xn = A- b which implies that

(3.11) k(,mr , A) s n.

If A is symmetric and positive definite then (3.5) implies

Xm =A-1b and xi # A-
1 b for i<m. Thus k(,mr , A) S m and

for sufficiently small c, k(O mr A) =m.

.7 7
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4. OPTIMALITY OF THE MR ALGORITHM

In this section we study optimality properties of the mr

algorithm defined by (3.2). As we shall see the mr algorithm

is an almost strongly optimal algorithm provided the class F

is "orthogonally invariant". This concept is defined as fol-

lows. Let w be a real nx 1 vector such that II w = I.

Then

(4.1) Q = Q(w) 2I - 2 T

is symmetric and orthogonal, Q2= I. we say F is orthogonally

invariant if f

(4.2) AcF QAQ c F

for every Q of the form (4.1).

Remark 4.1

Let us recall that every orthogonal matrix 0 can be

decomposed into a product Q= Q 1 Q2 * Qn where Qi is of the

form (4.1). Thus, F is orthogonally invariant iff

Ac c QAQT C F

for every orthogonal 0. U

For example, the class of symmetric matrices, the class

of symmetric positive definite matrices, and the class of

matrices with condition number bounded by a given constant

are orthogaonally invariant.

a -. . . .. I I I
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We first investigate how the optimal matrix index depends

of b. (So we use the notation k(A,b) instead of k(A).)

Lemma 4.1

If F is orthogonally invariant then

(4.3) k(A,b) = k (QAQ , Ob)

for every Q of the form (4.1). U

Proof

Let Yk= Nk(Ab) and y = Nk(QAQ, Qb). Then y1 =Qyk

Let *= {Ok } be an algorithm. Define the algorithm

= {€} as

Let A'e V(y'). Then A = QA' a £ V(yk)

and

IA' * (yk) - ObI II O' (Yk) - 02 b1 =

JI1 A -yk bi11

This implies that k(0', GAO, Qb) 9 k(*, A, b) . Since * is an

arbitrary algorithm this yields k(QAQ, Qb) S k(A,b). To prove

the reverse inequality it is enough to interchange the role of

* and #'. U

From Lemma 4.1 easily follows

-- -m mM :2 ... . .
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Lemma 4.2

If F is orthogonally invariant then the optimal class

index is independent of b, i.e.

(4.4) k(F,b) = k(F), V 11bH = 1.

Proof

Let b and b2 be two vectors, b I  b = 1. Then

there exists a matrix Q of the form (4.1) such that

Q b1  = b 2 .

(The existence of such a matrix follows from the Householder

transformation). Then Lemma 4.1 guarantees Lhat

k(A , b I ) = k(QAQ, Qb) = k(QAQ , b 2 )

which easily yields that

k(F , b I ) = k(F , b2 ) . U

We now prove that the algorithm mr has properties

analogous to those described in Lemmas 4.1 and 4.2.

Lemma 4.3

If F is orthogonally invariant then

i) k( , mr, QAQ, Qb) = k(0mr , A,b)

for every Q of the form (4.1),

(ii) k( Omr, F, b) = k( .mr F). I1bI-lo

i.e.,the class index of *mr is independent of b.

' 4



-4.4-

Proo f

i) Observe that the coefficients c. of (3.1) are inde-

pendent of Q. From (3.2) we get

,mr (()A b, k flr ( Nk(A,b)) = Qxk.

Since I b - Axk 11 = JI Qb - QAQx' II we have to perform

exactly the same number of steps for the problem (A,b) and the

problem (QAQ, Ob) to find an E-approximation. This proves (i).

(ii) Observe, as in Lemma 4.2, that

k( mr , A ,b) = Ms mr , QAQ , b2 )

where b2 = Ob1 , I bI If = j1 b 2 11 = 1. This yields
k(mr = k(,mr F b 2 )

and proves (ii). U

We are ready to prove the main result of this section

which exhibits a close relation between the matrix index of *mr
and the optimal matrix index.

Theorem 4.1

If F is orthogonally invariant then the matrix index of

the mr algorithm differs by at most unity from the optimal

matrix index, i.e.,

(4.5) k(A) " k(, mr A) + a, At F

where an 0 or a=-l.
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Furthermore either a 0 or a =-1 can hold.U

Proof

Let (0 k be any algorithm. Let k k= ,)<-

This means that

(4.6) xl - b < c Ae V(yk)

where xk cP(Nk1A,b)). Decompose

=v z + z
Xk 1 2

kwhere zIis a linear combination of b, Ab, ... A' b and z2is

orthogonal to b, Ab,.. Ak b. Define

The otherwand

Clary wAi ) fri 0, k.Le

T h e n E F a n b = Q A Q b = Q A b b = A b , i = l , 2 ,. . . , k .

Thus, A V(yk) and

Ax b AI = II - 2 (w , x'k) A w -b

Note that (w., xk') A w -A2 2  which yields

IAx bumI Az1 - b - Az 2 I

Observe that
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1J Az -b 1 1 (ItAZ 1 - b - Az2f1  fAz, -b + AZ2 II) =

1 (II AX - b 11 + 11 Ax' - b 11)< C

due to (4.6).

Recall that xk+1 = (Nk+l(Ab)) lies in the same

subspace as zI and

II AXk+l - b 1 ! 11Az- b I < c

From (3.10) we conclude that

k( mr', A) ! k+ = k(,A) + .

Since f is an arbitrary algorithm we have

k( ,rA) S k(A) + 1 .

On the other hand it is obvious that k(A) 5 k(4mr, A). This

proves (4.5).

We now show that either value of a can occur. Let n - 2

and

F= {A: A-A* > 0 and cond(A) S M}

be the class of 2 x 2 symmetric positive definite matrices with

condition number cond(A) = IhAII IIA-111 bounded by a given number

M, M > 1. Note that F is orthogonally invariant. Let

b - [l,OJT and £ s (i7 c2 ,  where

c = 2 /W / (M -) .

TMi) Assume first that Ab = c .1 1 . Then
x - r (b Ab) f - 2-- b

l+c 2

and
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Ax 1 - bll= 1i 2

Thus, k( mr, A) > 1. From (2.13) we conclude

mr
k( m A) = 2.

We show that k(A) = 1. Indeed, knowing b and Ab we conclude

that A is of the form

c 1
A=

Il xj

where x is a real number choosen in such a way that A is

positive definite and cond(A) M. The eigenvalues of A arc

= (c+x t (cx)2 + 4)/2.

Thus x > 1/c guarantees positive definiteness of A. The con-

dition number of A is

cond(A) = f(x) = (c+x + /(c-x2 (c+x - X)

Note that

f(x) z min f(x) = f(c+ 2/c) = M.
x

Since cond(A) is at most M we conclude that

x = c + 2/c.

This means that V(yk) consists of one element and the algorithm

01 (b , Ab) = A -1 b

is well defined and has zero error. This proves that

k(A) = I = k(,mr A) - 1

Hence, (4.5) holds with a= -1.
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(ii) Assume now that Ab= b. Then, of course,

X 1 =,mr(b, Ab)=b and k(A)=k(0 mr, A)=I

Hence (4.5) holds with a = 0. This completes the proof of the

theorem. U

From Theorem 4.1 it easily follows that *mr is almost

strongly optimal and k( mr, F) differs at most by unity from

the optimal class index k(F).

Corollary 4.1

If F is orthogonally invariant then

(i) the minimal residual algorithm is almost strongly

optimal (with c= 1 in (2.11)).

(ii) k(F) = k(O mr F) + a where a= 0 or a=-I.

In Section 6 we show that either value of a in (ii) of

Corollary 4.1 is possible. Since k(F) is usually large,

Corollary 4.1 states that k(F) is essentially equal to

k( mr, F). Thus, it is enough to know k(O mr, F) to conclude

the value of k(F). In Sections 5 and 6 we find k( mr, F)

for different orthogonally invariant classes F.

We end this section by a remark that if F is not orthog-

onally invariant then none of the optimality properties of the

algorithm # mr hold. More precisely we present an example of F

for which the mr algorithm can be arbitrarily far from optimal.

We also show that k(F) depends on b.

I
-,i 11, m 1 l_- -
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Example 4.2

Let D be the class of n x n symmetric trididgonal matrices

whose diagonal elements are equal to unity. Thus A c t implies

I a1

a 
1

1 an I

Let

F = {A : A 4; cond(A) S Ml

for a given M, M>l. The class F is not orthogonally invariant

since the matrix QAQ with Q of the form (4.1) is not neces-

sarily tridiagonal. We consider two cases for two different

vectors b.

(i) Assume first that

b 1 = [1 , 1 1 . .. ]T

Then knowing z = Ab [z, .... znIT we get

S+ a I = z 1

ai_1 + 1 + ai = z i , i = 2,..., n- i.

From this we find the coefficients ai ,

a1 =z I - 1

a i =z i -1- a 1 , i = 2 ... n-l.

Since we know the matrix A, the algorithm

x = (b Ab 1 ) = A- b1

is well defined and II AX' - II = 0. Thus

---.- . ..- m nm, pP ' n l np p~ i'wm
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(4.7) k(F , b) = 1, VE C (0 , 1].

It can be verified that for sufficiently small E, the algo-

rithm , mr has to use the information N (A, b) which means

that

k( *mrF, b1) = .

Hence we get the smallest possible value of k(F, b1 ) and the

largest possible value of k( mr, F, b1 ).

(ii) Assume now that

b2 = [l, 0,..., 0]T

Then Ab2 = [l, al, .. 0 3T supplies only the information

about the first row (and the first column) of the matrix A.

Similarly knowing Ab, ... Ai b, we know the first i rows (and

columns) of the matrix A. Since the off-diagonal elements of

the jth row, j =i+l, i+2 ... , n-l, are unknown, it is easy

to conclude that for sufficiently small E we have

(4.8) k(F, b2 ) = n.

Thus, for the same value of E, k(F, b) can be equal to unity

for some b as in (4.7) and can be equal to n for a different

b as in (4.8). This illustrates that if F is not orthogonally

invariant, k(F b) depends on b. U

*
=,.I ..._. .. :.:: ..l ~ rI,~ iII, ~,. mili ~q l p| 1,r-
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5. MATRICES WITH BOUNDED CONDITION NUMBER.

In this section we deal with three orthoqonally invariant

classes of matrices defined as

(5.1) F 1 = {A : A = AT > 0 , cond(A) : M),

(5.2) F 2 = {A : A = AT , cond(A) S M},

(5.3) F 3 = {A : cond(A) ! M)

where cond(A) = IfAII IIA-111 is the condition number and M -s

a given number such that M a 1. That is, F 1 is the class of

symmetric positive definite matrices with condition number

bounded by M, F 2 differs from F I by the lack of positive de-

finiteness and F 3 differs from F 2 by the lack of symmetry.

The case of most interest is when M is large since such prob-

lems arise in applications and are difficult to solve.

Our main interest in this section is to find the optimal

class indices for the three classes and to see how the lack of

positive definiteness and the lack of symmetry increase the op-

timal class index. We find the optimal class index by computing

the class index of the mr algorithm and using Corollary 4.1.

We are ready to prove

Theorem 5.1

Let Fi be defined by (5.1) for i = l, 2, 3. Then

(5.4) k(F 1)-a 1 =k( F 1 ) l - min(n, Lin in 7-/F_1 j--] +  .

..... IllI~lmi ,m im, / "ia',-,r-
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(5.6) k(F 3 ) = k($mr F3 ) = n

where a i = 0 or a i =-1 for i = 1, 2. U

Proof

Let Xk = mr (Nk(Ab)) be the sequence generated by the mr

algorithm. Assume first that M= 1 and A c F Then A= cI for

some nonzero constant c. Since Ab = cb, x1 = ib and Ax -b = 0.

Thus k(F I ) = k(F 2) = k(mr , F1 ) = k(,mr, F 2 ) = 1 which agrees

with (5.4) and (5.5) for a 1 =a 2 = 0. Hence, without loss of

generality we assume M > 1 in the proof of (5.4) and (5.5).

(i) We first prove (5.4). It is well-known that for sym-

metric positive definite matrices the mr algorithm converges at

least as fast as the Chebyshev algorithm, i.e.,

(5.7) II Axk - b II ! 2 p k/ (1 + p 2k), k < n.

where p=(/-"- l)/(V + 1). (To show (5.7) it is enough to

define

P(t) = 1 - Tk(f(t))/ Tk(f(O))

where f(t) = (2t - 11A'L-1 IIAII)/ (IAII - IIA- 1IV1- ) and

Tk is the Chebyshev polynomial of degree k, and next apply

(3.4).)

It is also known that (5.7) is sharp, i.e. there exists a I
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matrix A from F1 such that we have equality in (5.7). For

completeness we sketch the construction of such a matrix A.

Recall that

k+1
(5.8) E Tj (zi) Ts (z 1 ) = 0 , J < s - k

for

z= C O: (k+ i) i=l, 2.., k+I,
zk ).

where E: denotes a finite sum whose first and last terms are to

be halved. Let

(5.9) A. = c[M+l + (M-1) zi 1/2, i= 1, 2,.., k + 1,

with

k+l # .
c = 2 1  [M+ 1 + (M- 1) zi

Then =c < ... < M.1 -cM, A / =M Further let

A =[ , -1 /2  A 1/ 2  
*.,A

1  .i -1/2L 1 2 X 'k 7 Ak+l "'

Note that XI A II- 1. Define Q = [11, &2 ..... n as an

orthogonal matrix such that QA = -b. Finally let

(5.10) A = Q diag(A l ..... Ak~l ..... Ak+l)QT.

T
Clearly A = A > 0 and cond(A) = M. Thus A c F . Note that

AC i= Ai ii for i= 1, 2, ... ,k+l and

1 -1/2 &~ / .. Xkl/ 1/21
b = - X/ 1

1 + ' 2  + I -k+l &k+l
) "

Let

WN(t) T T((0))' f(t) = (2t- c(M+1))/(c(M-1)).

Then W(0)-. Set m=k+l,
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1 -1/2 2 = _A 1/2  anc 1 A-1/2

Al 1 2 k d k+l - /- k+1

in (3.5). Then (W ,W5 ) is proportional to

k+l k+1

1" Tj(f(Ai)) Ts(f(Xi)) = " Tj(z i ) Ts(Zi )  = 01 ~ i=1

for j < s S k, due to (5.8). Hence (W is orthogonal and Wk

is a unique solution of (3.4). Thus

(5.11) )l Axk - b 112 = I W (A)b 112 =kl,, - T2(f(A1 ))/Tk2f(0)) 

k 2k l 2
= (2p k/ U+ P2k))2

since T2(f(X.)) = T2 (z) = 1 and kll A-1= 11 A112 _ 1. This provesi=1 1

that (5.7) is sharp.

Let k* be the smallest integer such that

2pk* U + P2k*) < E

Then

k* L Ln - ln r+_ j +

Let k = k(*m r, FI). Note that if k*s n then k = k. Indeed,

k < k* implies k < n and we can find a matrix A from F1 such

that

II Ax k - b II 2 k / (1 + p2k) a C

This is a contradiction. Thus k = k*. Since xn = a , k is

at most n. This and Corollary 4.1 proves (5.4).

(ii) We now prove (5.5). Let p- Lk/2J. Since A is

Odom
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symmetric, then A2 is positive definite. Assume that all

eigenvalues of A2 lie in [el , C2 ]. Then c > 0 and since

2cond(A) - M we conclude c 2 /c 1 s M2 . Define

T (f(t 2))
P(t) = 1 - T (f(0T-)) f(t) = (2t-ci-c2)/(c2 -C).

p

Note that P(0) = 0 and P is an even polynomial of degree

2p 5 k. From (3.4) we conclude

(5.12) 11 Ax - b 11 I! (I - P(A))b U; 2rP(l+ 2p)

where now p = (M - 1) / (M + 1) . Assuming that

(5.13) 2 Lk/2 J . n - 2

we construct a matrix A for which we achieve equality in (5.12).

Similarilyto (5.9) define

A = c [ M 2+ 1 + (M - 1) zi ]/2, i11, 2 ,.., p+l

with c = 2 1 I l [M 2 +l + (M2 - ) z.I and z. = cos(?(p+ 1- i)/p).
i= 1 1 1

(If p=0 we define z I =-1.) Then for p z 1 we have A1 =c < X2 <

Ap+ = c M2  A p+ 1  M2  Define the (p+ 1) x l vector

d as

d I 12 X / / -1/ 1]
r2.... p '2 p+l

Next let A be a n x 1 vector defined as

-= '2 Id , d , 0,.. ,

Note that Ij Ail = 1. Further let Q be an orthogonal matrix such

I II i/ lnllllm lnlm nll l i ,, I, lin , n , I
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that Q X -b. Finally let

(5.14) A Qdiag(/ I+..... 1 A 1 . - ..... - T

T
Clearly, A A . For p 1, cond(A) = / / I = M and for

p - 0, cond(A) = 1. Thus A F2 . Note that

m L (A2Jbb) = pl,, X _1

i=l i

(A2J+ib,b) = 0.

It is straightforward to verify that the solution c* of (3.3) is

given by

c 1 = c 3  c ... = C2[k/211 =0

and the coefficients c * satisfy the system2i

mp+11 2p2... m 2p c2p m

For p-O we have k-l and x1  0 which proves that (5.12) is

sharp in this case. For p a 1, we get the same system as for

the symmetric positive definite case with k replaced by p and

M replaced by M2. From this we conclude that

Ax k - b - -Wk(A2 b

where

1M ' ' 1.
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TI (f (t))2
W (t) T 1(f(t) f(t) = (2t - c(M 2 l))/(c(M 2 -1 ))
Wk~t T p(f(0))p

As in (i) we have

IIAx k-b I z2  A T (fC ))/T2 (f(0))
i=l p p

= (2 0p
/ (I + P2p))2

This proves that (5.12) is sharp as long as F.13) holU-.

Let k* be the minimal integer such that

2pp /(I + io 2p < C with p = i k*, Z ,

Then

k 2 L in/ M_ I1j + 2.

Let k = k(0mr, F2 ). Note that if k* <n then k =k*. 1 -

deed, k < k* implies 2 Lk/21 <5 n-2 and we can find a matrix

A from F 2 such that

IIAx k - bi 2lp / (1 +p2p)

where p = Ik/21 < k*/2 = p. Thus 11 Axk- b 11 a E which is a

contradiction. Hence k - k*. Since xn = a, k is at

most n. This and Corollary 4.1 proves (5.5).

(iii) We finally prove (5.6). Let b = 1l, 0....0 jT and

A = A =

1 
2
(1 0)
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Observe that Ai is orthogonal, cond(Ai) = 1. Thus Ai e F3.

Further

A1 b = Ai b = [0 ... , 01, , 0 ... , 0 T
2 i

for i < n. Let 4 k )*k} be any algorithm and let n denote

the n-th component of xk = *k(Nk(A~b)), k < n. Then

max(IA AI x k - b A I 2 x k - bIt

max(I n - 1 , It n + 1 I) al E.

This proves that k(OA) . n. Since k(F 3 ) is independent of b

due to Lemma 4.2, we conclude

k(F3 ) = k(,mr, F3) - n.

This proves' (5.6) and completes the proof of the theorem. U

Theorem 5.1 states how the optimal class index depends on

c and M. For small value of e and large values of M we can

simplify (5.4) and (5.5) to

(5.15) k(F1 ) = mi (n , - In 2(1 + o(1) + a12 C"( ())+ a

(5.16) k(F 2 ) = ma (n , M In 2 (1 + 0(1))) + a

Remark 5.1

In typical applications there is a relation between n, M

and £. For instance, if one approximates a two dimensional

elliptic differential equation then the corresponding matrix is

i
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symmetric and positive definite with M n. One usually sets

c = n which yields

k(F 1 ) L ifn in 2n

If n is sufficiently large, i.e. , if the mininumn in (J.5)

is attained for the second argument, then

k(F 2  2Lin I+ in M+I + '+a,(5.17) '2' C M 24( 1-ol
k(F1 ) 1 + / 21M(I + o(l)

Lin C-C v + l + I + a
Af-l

This shows that the lack of positive definitness increases the

optimal class index roughly 2 vM times. For large M, which

arise frequently in practice, this is a very significant dif-

ference.

We discuss Theorem 5.1 for the class F The theorem

states that if fewer than n matrix-vector multiplications are

permitted it is impossible to find an c-approximation no matter

what algorithm is used. Note that this result holds for arbi-

trary c, and M, i.e., c and M can even be equal to unity.

It is the lack of symmetry which causes the increase of the op-

timal class index to its maximal value n.

Remark 5.2

Using a similar proof technique it is possible to 3how that

(5.6) holds for much more general adaptive information operators.

Namely, assume that
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(5.18) Nk (Ab) = [b, AzI , Azk2 .... Azk

where zi zi(b, Az1 , Az 2 .. Az is an arbitrary function of

b and previously computed information. Then for any algorithm

= {00l there exists a matrix A from F3 such that

(5.19) 11A k (Nk(A,b)) - b 11 L 1, V k < n.

This means even the adaptive information (5.18) is too weak to

find an E-approximation using less than n steps. Once more

(5.19) holds for arbitrary c and M. See section 9 for a general

discussion of adaptive information. U

We summarize this discussion in

Corollary 5.1

For small c, large M and

CM 1

we have

k(F1) 2i (I+o(l)),

k(F 3 ) 2n
k(F 1) n (l +o(l)).m

E

Ol1 70.
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6. MATRICES OF THE FORM A - I - B.

In this section we consider two additional orthogonally

invariant classes of matrices. For these we find the clas:;

index of the mr algorithm and the optimal class index. we

also show when the Chebyshev algorithm and the successive ap--

proximation algorithm are optimal.

Let

F4 T  , 1:. < 1:
(6.1) F4 = {A : A = I - B, B = , B 1

(6.2) F5  = {A : A I I - B, B 11 s P < i}

Thus F4 is the class of symmetric positive definite matrices of

the form I- B where the norm of B is bounded by a known con-

stant p, p < 1. The class F5 differs from F4 by the non-

symmetry of the matrices B. Of course, F4 c F5. Note that for

p =0, F4 = F5 = {I}. To exclude this trivial case we assume that

p > 0.

Remark 6.1

Observe that

(6.3) cond(A) 5 (1 + p)/(l - p) , V A c F,

and (6.3) is sharp. This establishes a relation between the

class F4 and the class F1 with M = (1 + p)/(1- p). Note, however,

that if AeF 4 then 11ail !l+P and IIA- 1 s (1-0 - 1.

These bounds do not hold for matrices from F . The class F5

7,17 Mr .1
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is related to the class F with the same M (l+p)/(l-P).

The difference between F5 and F3 appears if M goes to

unity, i.e., p goes to zero. Then F5 contains only the

identity matrix whereas F3 contains matrices of the form cQ

where c is a real constant and Q is an orthogonal matrix. 2

We first find the class index of the mr algorithm for

the two classes F4 and F5.

Theorem 6.1

Let F4 and F5 be given by (6.1) and (6.2). Then

(6.4) k(4mr F 4 ) = min(nLln 1 + /In 1 + /1 2 + 1)

(6.5) k(,mr , F5 ) = min(n, L In p (1- 6)1 + 1)5 'In p

where 6 = 6(c,p) satisfies

(6.6) 0 S 6 s -D 2 + 0 2 .2}2 In c

Proof

(M) We prove (6.4). Let M = (l+p)/(l- p). Define the

matrix A by (5.10). Let

B = I - A

c

where c is given by (5.9). Then B=BT and IBII=0. Thus

A1  I -B= - A belongs to F4  Then x= mr= 4 " - k k Nk(A')c mr
C mk (Nk(A'b)) and (5.11) yields

IIlx k - bil =IA, r (Nk (A,b)) - bl = 2pk/( + . 2k)k1



where P, - k

Thus the -lass nrc.ex of the m : ;lz.,rithm the class F 4 is the

same as for the class F 1 wit n M I + ,i ',i Since

(6.4) follows from (5.4),

(ii) To prove (6.5) observe that knowir , A Ib we also know

B ib, B=I -A, for i=O, 1,...,k. Thus the aloorithm

Xk = Ok(Nk(A,b)) =b±Bb+...+ k-lb

is well defined and

AK - b b = k1 s b

k-lbte
Since x' lies in the space spanned by b, Ab, t.A b, tflen

(6.7) 1 Axk - bl ! Ax - b1 s P k

where xk= , (Nk(Ab))" We now find a lower bound on Axk - b

for k<n.

Let b= [1, 0,...,.0]T and B=pQ where

Q(

Then ,TBTbh= B [0,...,0, 1, 0.....0] T  i < n. Since A = -S,
i+l

(3.4) easily yields that
11Ax k -bll : mir flPk(B) bl

Pk(])l

where Pk(t) =po+Plt+...+pktk is a polynomial of degree at

most k and p0 + Pl + "+ Pk = 1. Since the Bib are orthogonal,

* i = O, 1,...,k, then

j 2(B)b 2  2 2 2 22k.41' l , II k(b 0I 1 p Pl +'+k 0
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By a standard technique we can show that

-- 2 -~

(6.8) 11,,x bil = m.in p 2 + P P k =

k.p0 + .. Pk = I

= k I 2

1 2(k+l)

Compare with (6.7).

Let %' be the smallest integer such that l Ax k - b Ei < c.

From (6.7) and (6.8) it easily follows that

k < rin(n, Lin E/ln p I + 1) ,

k 2 min(n, In c (1 1 in(1- P2 + 2 p2 +
in p -2 In

This proves (6.5) and (6.6) and completes the proof of the

theorem. U

To find the optimal class index for the class F4 we use

Theorem 6.1 and the properties of the Chebyshev algorithm. It

is known that the Chebyshev algorithm fch applied to the sys-

tem x = Bx + b, with A = I - B e F4 , constructs the sequence

{xkl such as

Tk+ (-B)b•

(6.9) b - Axk k+14 b.
Tk+ 1 (-)
k+l P

The vector xk can be computed from the recurrence conditions

x = 0, x 0 = b,

(6.10) xi+1 = ci+ (BXi + b - x ) xil

C - 2, ciWli-

4 4
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for i=0, 1..... Note that xk depends on b, Bb ..... Bkb or

equivalently on Nk(A,b). Thus

Xk ch (N (Ab))

Remark 6.2

Note that the Chebyshev algorithm is not well defined

for the class FI ' Indeed, if AEF1 then the norm of

B = I - A can be larger than unity.

Let

(6.11) q ( )in = 
+ 1 + /ln

£ P

We find the class index of the Chebyshev algorithm.

Lemma 6.1

k(,ch F 4) = q(c) .

Proof

From (6. 9) we have

(6.12) 1 b - Axk II J Tk+l(lp) 1- = 2 k+l / (I + p2(k+l))

where P2 = p/(1+ / p-). To show that (6.12) is sharp assume

that Bb = pb. Then (6.9) implies

b - Axk = {Tk+l(1)/Tk+(1/p) ) b

Since Tk+l(1) = 1 we obtain the desired result. Note that the

smallest k for which I Tk+1 (1/o)V 1 < c is equal to q(c).

A;eko
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This proves Lemma 6.1.

We are now ready to derive the optimal class index.

Theorem~ 6.2

k(F 4) min(n~q(E)).

Proof

Assume first that q q q(c) <n. Then (6.4) and Corollary

(4.1) yield

kmF 4) q + 1 !5 k(F 4 ) +- 1.

chsince k(F 4  !5 k( c , F 4) Lemma 6.1 gives k(F 4 ) = q.

If q n, k(#mr , F4) n s k(F 4) + 1 which yields

k(F 4 ) a n-i1. We defer the proof that k (F 4) n until

Section 7, Theorem 7.3.U

We obtain the optimality properties of the Chebyshev

algorithm.

Theorem 6.3

(i) The Chebyshev algorithm is

ch

no optimal if q(c) > n, k(ch .F 4) -k(F 4 ) =q(c) -n.

(ii) The Chebyshev algorithm is not strongly optimal.

More precisely there exists a matrix At F 4 such that

k (0, A) -k(A) =k(#*h ,F 4 -1q(c) - 1.
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Proof

Conclusion (i) follows directly from Lemma 6.1 and Theorem 6.2.

To prove (ii) set A= I - B where Bb= pb. Then k(A) = 1 and

ch
from the proof of Lemma 6.1 it follows that k(O ,A) =q(E)

k(,ch F4 ).

Note that the assumption q(C) < n implies that c is not

too small relative to p and n. For small C, p close to

unity, and n so large that q(c) < n, we have

2

(6.13) k(F 4) = k(O C,F 4 ) = k(Omr,F 4) -1 = ln * (+o(I)) .V-2 (I - p

which corresponds to k(F 1 ) with M = (I+p)/(l-p).

We now proceed to the class F5 . First of all observe

that we do not have the exact class index of the minimal re-

sidual algorithm since an unknown 6 appears in (6.5). Note

that 6 = 6(c,p) goes to zero with c for fixed p. However,

if p goes to unity with fixed c, then 6 c (0,1) and (6.5) is

not useful. It is possible to improve (6.5) but we do not

pursue this here.

For sufficiently small c, 6 = o(l) and (6.5) can be

written as

(6.14) k(4mr,F5) = min(n, [ in c (1 + o(1) )] + 1)in P

From Corollary 4.1 we find

(6.15) k(F5) = min(n, L (1 +o(1)) + 1) + a 35411L-
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where a3 = 0 or a3 = -1. If, additionally, p is close to

unity and n is so large that the minimum in (6.5) is attained

for the second argument, we have

1
(6.16) k(F5 ) = c( + 0(1)).

Note that for the corresponding class F3 we always have

k(F3) = n. Comparing (6.16) with (6.13) we see that

(6.17) k(F5)k(F4 } - (1 + o(i)).

This shows how the lack of symmetry increase the optimal class

index.

We now show that the successive approximation algorithm

*sa is asymptotically optimal for the class F5. This algo-

rithm constructs the sequence {xk) as

Xo=b

(6.18) 
0

xi+1 = Bxi + b, i = O, 1,...

Bkb X= sa
Thus xk depends on b, Bb,..., b and xk = k (Nk(A,b)) with

A = I - B. Obviously

b - Axk B - 8k+1 b p k+l

Note that this estimate is sharp since for Bb = pb we get

equality. This proves that the class index of sa is the

smallest k for which Pk+l < C. Thus

(6.19) k(,saF) = ln c /In P•

"1W
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Comparing with (6.16) we have

k(Sa, F5 )
k(F5) = 1 + o(l).k(F5 )

for small E and large n. This shows that the successive ap-

proximation algorithm is asymptotically optimal. As was the

case for the Chebyshev algorithm, the algorithm *sa is not

strongly optimal since for A = I - B, where Bb = pb, we have

k(,Sa,A) - k(A) = k( sa,F 5) - 1 =l1n c /In PI- 1.

We summarize these properties in

Theorem 6.4

The successive approximation algorithm * sa is asymp-

totically optimal for small e and large n,

k(F5) k(Sa,F5 ) = L In E/In pJ.

The algorithm *sa is not strongly optimal. U

The importance of our optimality result concerning F5 is

that in numerical practice the linear system Mx = g is often

transformed into x = Bx + b. Examples of such transformation

are the Richardson, Jacobi, Gauss-Seidel and SOR algorithms.

Our result states that asymptotically the transformed system

with a nonsymmetric matrix B is best solved by the successive

approximation algorithm.
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7. GENERALIZED CRITERIA

In this section we introduce a family of approximation

criteria depending on a parameter p. The criterion used in

Sections 2-6 corresponds to p = 1. The values of p of

greatest practical importance are p = 0, 1/2, 1.

A lower bound on the optimal matrix index is obtained

for any orthogonally invariant class and for any value of p.

For some values of p, we define a "generalized minimal

residual algorithm" for which this lower bound is almost

achieved. We next find the optimal class indices for the

class F4 with arbitrary p and for the class F5 with p = 0.

We establish the optimality of the Chebyshev algorithm for F4

with any p and the optimality of the successive approximation

algorithm for F5 with p = 0.

In (2.1) we defined an c-approximation as a vector whose

residualhas norm less than c. Here we assume that the c-ap-

proximation x satisfies the inequality

(7.1) II AP(x - ) I <

II AP all

where a = A-Ib and p is a nonnegative real. Note that for

p = 1, (7.1) coincides with (2.1). For p = 0, (7.1) means

that the relative error of x is less than E.

If p is not an integer we assume that A is symmetric

and positive definite to guarantee the existence of AP .

We generalize the concept of the matrix index of 0 to
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(7.2) k(#,A) - min{k : IIP(xk - -b)II/IIAP-lbll , V v(yk)

where k - *k}, xk - *k(NkA, b)) and V(yk) is given by (2.4).

(If the set of k is empty, we set k( ,A) = +a.) Then all

concepts introduced in Section 2 may be generalized in an obvious

way using the new definition of the matrix index of .

For given A and m define the coefficients c*, ci ... c*

and the error e(A,m) as

(7.3) e(Anm) = II AP(a - c*b-...-c*Am b) II = mini AP(a - cob-.. .-CA11
C,

Let

m(A) = min(m :e(A,m)/IA p &11 < c, V A V(ym)

where a = -lb. We prove

Theorem 7.1

If F is orthogonally invariant then

(7.4) k(A) 2! m(A) , V A e F. U

Proof

As in the proof of theorem 4.1 let f = {Ok be any algo-

rithm such that k = k(#,A) < + . This means

(7.5) II A.P(x - A)III p  , £ , V A )

where xk- #k(N k(Ab)). Decompose

Xk - Z + Z 2

4'O

F~l'' rv E~| i .• i ..... . .. A
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where z1 E lin(b, Ab,.., Akb) and z2 is orthogonal to

b, Ab .. Ab. Define A= Q Q with Q=I - 2wT and

W = Z2/ 11Z2 11 fora nonzero z 2 and w = 0 for z2 = 0. Then

A c F and Atb = Aib, i =1, 2,..,k. Thus A1  V(yk)-

Observe that

(7.6) aI = Q3 and IIA P  11I = IIAP I•

Furthermore,

(7.7) II (x' - a i X Q(z 1  a Q + Z2 + 2.(wc)w) =

= II 1 (z1-c) + W Z 2 + 2((w,a) - (w, z1 - + z 2 + 2(w, ) Pw

-- II aP(z1-c) + pz2 - 2(w,z 2 )ApPWRI- cz a)- Pz

From (7.5), (7.6) and (7.7) we get

e(X~~~k) ~ Ilpz ~l 51 I (zl-)Rzl II-z a Xz

II p(z - a)I I 1lpx -~zI 3)z 1 )4z1I

1 k Ii) < E

]1 , . 2 I , p  a,11 I lp  11 ] p  .1/

Thus k a m(A). Since * is an arbitrary algorithm we conclude

k(A) a m(A). Hence (7.4) is proven.

Theorem 7.1 provides a lower bound on the optimal matrix

index. The next part of this section is devoted to finding

algorithms whose class indices are close to this lower bound.

I
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As we shall see, this can only be done for certain values of p.

We check when the coefficients c. defined by (7.3) can
1

be computed in terms of the information Nk(Ab). From (7.3)

it follows that c* = c, c*,... c ]Tsatisfies the linear

equations

(7.8) Hc* = h

where H = ((Ai+Pb,AJ+Pb)), i, J = 0, 1..., m, and

h = [(APb,AP-lb),..., (Am+Pb,AP-lb)]T.

We consider two cases.

(i) A = A T . Then if 2p is integer, 2p ' 1 and

m = k - rp1, the vector c* depends only on Nk(A,b).

(ii) A i A. Then if p is integer, p a 1 and m = k - p,

the vector c* depends only on Nk(Ab).

If either (i) or (ii) holds then the algorithm *mr = (mr)'
k

mr * Ak-FpIb
(7.9) Xk = *k (Nk(Ab)) = c* b +..+ c* lA b

is well defined and is called the generalized minimal residual

algorithm.

Note that for p = 1, (7.9) coincides with (3.2). Assuming

that A = AT > 0 we can set p - 1/2 and the algorithm *mr

is known as the classical conjugate gradient algorithm. See

for instance Stiefel (58J. In this case one of the possible

ways to compute xk is as follows.

Let x 0 = 0. For i-0, 1.... k-l define

POWT
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(7.10) x xi + _l {f (x x - r =Ax b,

where

(Ar i , r i
qi (ri .r i ) i-I

(7.11) f 0=(ri..ri)
f-i 0, fi- (ri , r i _  qi-i

ComDare with (3.7) and (3.8).

For p = 0 and A = AT  the first component (b,a) of

the vector h is in general unknown. If, however, one considers

the consistent system Mx = g and if one agrees to multiply this

system by MT  then A = MT M, b = M Tg, and (b,a) = (gg) is

computable. Then the generalized minimal residual algorithm is well

defined and is known as the minimum error algorithm. In this case

we can compute xk as follows. Let x0 = 0. For i = 0, 1.....k i

define

(7.12) x 1  x + {f x -r ri = Ax i  b,i+ , qi i-I '

where

(ri,r )

IMx 1-Q 112

(7.13) 2

f- = 0, f = iIMxi gl 2  qi-i

i ll1Mx 1 l

We are ready to show that the generalized minimal residual

algorithm is almost strongly optimal.

I LI,
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Theorem 7.2

Let F be orthogonally invariant. Suppose that the fol-

lowing two conditions hold:

T(i) If Ac F implies A= A , VAcF, then 2p is an integer,

otherwise p is an integer.

T(ii) If (b,ca) is known and A E F implies A= A VAEF,

then p ? 0, otherwise p > 0.

Then the generalized minimal algorithm is almost strongly op-

timal,

(7.14) k(A) + a = k(mr ,A) = m(A) + Pl, VAcF,

where a is an integer from [0, fpJI. 

Proof

Note first that (M) and (ii) guarantee that the algorithm

mr is well defined. From (7.3) and (7.9) we have

11 Ap(a - xk)  e (A, k-Fp 1) .

Thus

k(0m,A) m me(A) + rpl.

Obviously k(,mr A) a k(A) which due to (7.4) yields

0 !, a = k(,mr ,A) - k(A) : FpI.

This proves (7.14). n

Observe that for p= 1, the conditions (i) and (ii) are

always satisfied and Theorem 7.2 coincides with Theorem 4.1.
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For p= 1/2 , Theorem 7.2 states that the classical coniucate

gradient algorithm is almost strongly optimal and the matrix

index of the classical conjugate gradient differs by at most

unity from the optimal matrix index.

If p can be set equal to zero, then (7.14) states that

k(A) = k(,mr,A) = m(A)

Thus, the minimum error algorithm is strongly optimal.

We now end this section by finding the optimal class index

k(F) for the class F=F 4 for arbitrary p, and for the class

F = F5 with p- 0. We also indicate which algorithms are optimal

but not strongly optimal. Recall that

Let F-F 4 be defined by (6.1). Then for arbitrary p,

k(F4) - min(n, q(c)).

Let the *ch be Chebyshev algorithm defined by (6.10). Then

chk( h , F ) = q(c).

If q(E) % n then the Chebyshev algorithm is optimal but not

strongly optimal.

If q(c) > n then the Chebyshev algorithm is not optimal.

Based on the proofs of Theorems 5.1 and 6.1 we can show that

for arbitrary p.
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Mr(F 4 ) d max M(A) - min(n, q(c)).
AcF 4

From (6.9) it is obvious that

iiAPa - ch (N(A,b))l 2 11APll k+/( 1 + (k+1) VAcF
ff k~A)I 211 2 LC 4,

where p2 = p/(l+ 7 . Thus

k(,ch, F4 ) : q(E).

If q(e) s n then

k(F4 ) • k(,ch, F4 ) : q(c) = m(F4) s k(F 4 )

due to Theorem 7.1. This proves the optimality of the Chebyshev

algorithm for q(E) s n.

chWe show that k( c , F4 ) = q(c). As in the proof of Lemma 6.1

define A=I-B with Bb=pb. Observe that

-ch (Nk(Ab)) = {Tk+l(l)/Tk+l(l/p)} a

Then q(c) =k(,ch, A) s k(,ch, F4 1 s q(c) which yields the needed

result.

Since k(A) - 1, we have k(,ch, A)-k(A) =q(c)-1 which proves

that the Chebyshev iteration is not strongly optimal. Finally,

note that k(F4) is at most n which completes the proof of

Theorem 7.3. U

Remark 7. 1

Observe that the proof of Theorem 7.3 for p = I completes

the proof of Theorem 6.2. U

-A-
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For the class F=F 5 with p= 0 we prove

Theorem 7.4

Let F=F 5 be defined by (6.2) and let p= 0. Then

k(F 5) = min(n, Lin c /in pJ).

Let 0 sa be the successive approximation algorithm defined

by (6.18). Then

k(sa, F 5 ) = Lln E / In p J.

If [In c / In p J ! n then the successive approximation

algorithm is optimal but not strongly optimal.

If LIn c / In p J > n then the successive approximation

algorithm is not optimal. U

Proof Ba

Let x, = *k (Nk(Ab)) with A= I- B. Since

((a - X kil-=11 IS ai ll P +1Hll,

we have

(7.15) k(F5) k(Osa , F5 ) s Lin c / In P J.

We show that (7.15) is sharp for LIn c / In p J s n. Let k < n

and A-I-B, A= I-g, where

where Q and 0 are (k+l) x (k+i) matrices and I is the
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(n-k-i) x (n-k-i) identity matrix. Let0 0 E
= 0 : =

Observe that IIBII =1111 = p which implies that A, A • F5. Further-

more Bb= Bb, i= 1, 2,...,k, for b= [1, 0,..., 0]T . Thus

A ib=A ib, i =1, 2 ... k. Let a =A-lb and i=A-1 b. Then it is

easy to show that

(7.16) a + k+la1 + k+1

Let * be an arbitrary algorithm, xk = Ok(Nk(A,b)) and let

k=k(OA) < n. Then

(7.17)(xk - al xk -

Vlictll

From (7.16) and (7.17) we have

2ck+ H
+ I1 II = II- cII s Ilk- ll + IlIxk-cII < C(Ilall + IIla l)1+p

M 2c klHl
I + pk~

Thus pk+1 < c , which implies

k= k (0, A) : L in C/ln PJ.

Since * is arbitrary,

k(F 5 ) z k(A) z LIn I/in p].

V111 i l



From (7.15) we get

k(F 5) =k(, sa F 5) Lin c/in PJ.

as long as Lln c/in Pi J n

This proves that the algorithm * s is optimal.

Define A=I-B where Bb.2pb. Then k (,sa A) =Lin c/in.I

This arnd (7.15) proves that

c(O s, F 5  L Lin E/in PJ .

Since k (A) = 1, we have

k (,sa A)-k(A) - k(B,sF 5 )- = Lin E/in PJ-1

which proves that the algorithm *sa is not strongly optimal.

Note that k (F 5 ) is at most n which completes the proof

of Theorem 7.4.

For p=l1 we established only the asymptotic behavior of

k (F 5) For p=0 we have the exact value of k (F 5)
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8. COMPLEXITY

We have given lower and upper bounds on the optimal matrix

and class indices for computing an c-approximation. We show

how these results can be employed to bound complexity (minimal

cost) of finding an c-approximation.

We first outline our model of computation. For sim-

plicity, let the cost of each arithmetic operation be unity.

We assume that the cost of one matrix-vector multiplication

Ax, for an arbitrary vector x, is cn. Note that c = c(A)

depends on the structure of A and for sparse matrices c is

usually proportional to unity rather than to n. In this

paper we discuss algorithms depending on the information

Nk(Ab) = Ib, Ab ...., Akb). As noted above this does not

necessarily means that we actually compute Aib, i = 1, 2, ..., k.

Rather it means that we compute Azi. i = 1, 2, ..... k, where

zi is a linear combination of b, Ab, ..., Ai-lb. For any

choice of zi, we perform k matrix-vector multiplications

and we therefore assume that the cost of Nk(Ab) is kcn.

Let * = 4 k be an algorithm. To find xk = *k(Nk(Ab)),

given Yk = Nk(Ab), we compute * (y). Let d(Wk) denote

the combinatory complexity of *, i.e. the cost of combining

the information Yk to produce xk. Note that Yk represents

(k + 1)n scalar data. We postulate that the algorithm 0i
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uses every scalar piece of data at least once and therefore

(8.1) d(mk) a kn, V,.

If the combinatory complexity of f is linear in the

total number of scalar data of Nk(A,b), i.e., d(O,k) 5 c1kn

for some "small" constant c1 independent of A, then d(Ok)

is close to minimal.

Let comp(O,A) denote the cost of finding an C-approxi-

mation, i.e. the cost of computing xk = *k(Nk(A,b)) such

that II Xxk - b 11 < c (or II P(xk -a) I/I XP-lb II < C if

criterion (7.1) is used) for every matrix A which has the

same information as A, A C V(yk ). By definition we have to

perform k(O,A) matrix-vector multiplications to find an

c-approximation. Thus

(8.2) comp(*,A) - c(A)n k(O,A) + d(o,k(,A))

Remark 8.1

The quantities defined in this section also depend on c,

b, Nk and F. We remind the reader that for simplicity we do

not exhibit this dependence in our notation or terminology. A

Due to (8.1) we have

(8.3) comp($,A) ; (c(A) + l)n k(*,A).

We seek algorithms with minimal complexity. Define

(8.4) comp(A) = min comp(f,A).

0" own
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Since k(0,A) . k(A), (8.3) yields

(8.5) comp(A) a (c(A) + l)n k(A).

Thus equations (8.4) and (8.5) motivate the following defini-

tion.

An algorithm * is an optimal complexity alqorithm for

A iff

(8.6) comp(OA) = comp(A)

and * is an almost optimal complexity algorithm for A iff

there exist two small integers c1 and c2 such that

(8.7) comp(O,A) 5 (c(A) + c1 )n(k(A) + c2).

Due to (8.5), c I > 1 and c2 a 0. In many cases, k(A)

is much larger than c2 and c(A) is much larger than c .

This yields

(8.8) comp(A) Z comp(O,A) - c(A)n k(A).

We are ready to prove

Theorem 8.1

An almost strongly optimal algorithm with linear combi-

natory complexity is an almost optimal complexity algorithm

for every A from F.

If * is an almost strongly optimal algorithm then
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k(#,A) s k(A) + c2, V A e F, where c2 is a small integer due

to (2.11). The algorithm * has also linear combinatory com-

plexity, d(*,k) ! c1kn. Thus

comp(O,A) : (c(A) +c1 )n (k(A) + c 2 )

which agrees with (8.7). U

We proved that the minimal residual algorithm ,mr is

almost strongly optimal for orthogonally invariant classes.

See Corollary 4.1. We now consider the combinatory complexity

mrof * . For the classes F = F1 or F = F4. the algorithm

mr is defined by (3.7) and (3.8). From this it is obvious

that its combinatory complexity is linear with c1 s 14 + 2/n.

For the classes F = F2 or F = F4, the combinatory complexity

of 4mro is also linear due to, as noted in Section 3, a fast

algorithm for the solution of any linear system with a Toeplitz

matrix.

Observe that the Chebyshev algorithm *mr defined by

(6.10) for the class F = F4 also has linear combinatory com-

plexity with c, S 4 + 5/n. The algorithm *ch is not an

almost optimal complexity algorithm for every A. Theorem 6.3

states that *ch is optimal whenever q(c) s n and then

k(ch, F4 = k(F4). Thus, if A is such that k(A) is close to

k(F4), then the Chebyshev algorithm is an almost optimal com-

plexity algorithm for A.

Similarily, for different criteria as defined by (7.1) we

conclude that for the class F F1 or F - F4 with p = 1/2,
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the classical conjugate gradient algorithm is an almost opti-

mal complexity algorithm. The Chebyshev algorithm is an

almost optimal complexity algorithm for matrices A such that

k(A) is close to k(F) for F = F4 with arbitrary p, when-

ever q(C) ! n.

Finally, for the class F = F5 with p = 0, observe that

the successive approximation algorithm *sa defined by (6.18)

has combinatory complexity equal to kn which due to (8.1) is

minimal. Theorem 7.4 states that Osa is optimal whenever

[ln c/ ln pi J n. Thus, for matrices such that k(A) = k(F5)

the algorithm 0 sa is an optimal complexity algorithm.

We summarize these results in

Theorem 8.2

(M) The minimal residual algorithm is an almost optimal

complexity algorithm for every matrix A from the

classes F1, F2 and F4 with p = 1.

(ii) The Chebyshev algorithm is an almost optimal algo-

rithm for matrices A from the class F4 for

arbitrary p whenever q(c) : n and k(A) is close

to k(F4 ).

(iii) The classical conjugate gradient algorithm is an al-

most optimal complexity algorithm for every matrix A

from the classes F1 and F4 with p = 1/2.

(iv) The successive approximation algorithm is an otimal

complexity algorithm for matrices A from the class

I LIMr
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F 5 wi th p =0 whenever Lin Ec/in J s n a nd k (A) k k(F 5 ).
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9. COMPARISON WITH DIRECT ALGORITHMS

The results of this paper enable us to compare direct

algorithms for the solution of linear equations with optimal

(or nearly optimal) algorithms using the information Nk(Ab).

This comparison can be done for different classes of matrices

and with mathematical rigor. Here, however, we confine our-

selves to the comparison of the Gauss elimination algo-

rithm and the minimal residual algorithm for dense and sparse

matrices from the class F I , i.e. for the class of symmetric

and positive definite matrices with condition number bounded

by M.

We first consider the cost of the arithmetic operations

and then briefly discuss storage requirements. Assume A is

known. We discuss the case of dense matrices. Then

the Gauss elimination algorithm requires n3/3 + 0(n2)

arithmetic operations to find the exact solution of Ax = b.

(We neglect the effect of roundoff errors.) For simplicity

we assume that the cost of the Gauss elimination algorithm

is n 3/3, comp(G) = n3/ 3 taking the cost of each arithme-

tic operations as unity.

Even if the matrix A is known, it can be more effi-

cient to use "partial" information Nk(A,b) and apply the

minimal residual algorithm. Of course, in this case instead

of the exact solution we want to find an c-approximation

(in the sense of (2.1)). Section 8 yields that the cost of
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the mr algorithm is

comp(Omr) -: (c(A) +c 1 )n(Iln C /In -1 + 1)

Since A is dense, c(A) is proportional to n. Then

c(A) + c1 s 2n + 0(1). For simplicity we omit the lower

order term and conclude that if

(9.1) Lln 1+1- 2 /In /-+ I -

then compIfmr) < comp(G). Equation (9.1) exhibits the relation

between c, M and n which guarantees that the mr algorithm is

more efficient than the Gauss elimination algorithm. Note

that for n a 7 , (9.1) holds provided that either c is not

too small or that M is not too large. Thus if we want to

find an £-approximation with moderate c or if the condition

number of the system Ax = b is moderate then the minimal re-

sidual algorithm is superior to the Gauss elimination algo-

rithm.

We now discuss the case of sparse matrices. The cost of

the Gauss elimination algorithm (in fact the cost of any direct

algorithm) for sparse matrices depends critically on the

structure of A. For some favorable cases, the cost is pro-

portional to n, for some "bad" cases, it can be still propor-

3
tional to n . To include all cases assume that for the sparse

case the cost of the Gauss elimination algorithm is

!l I I I! i I-_.
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comp(G) = c2 n

for some 8 c [1,3] and a positive c2.

For the mr algorithm, set c3 = c(A) + c1. Since A is

sparse, c3 is of order unity. If

(9.2) in 1 + / / In < n -+
'/M -l 3

then comp(Omr) < comp(G). If c n/c -1 > 0, then (9.2)

holds provided that either £ is not too small or that M not

too large. In these cases, the mr algorithm is superior to

the Gauss elimination algorithm.

For example, set c2 = 1, 8 = 2, and c3 = 20. Approxi-

mating the logarithms, (9.2) can be simplified to

(9.3) /M- In 2 n•~ - C 20-i.

Then the mr algorithm is superior to the Gauss elimination

algorithm provided (9.3) holds.

We now compare storage requirements. As above we dis-

tinguish between dense and sparse matrices. For dense matrices,

the Gauss elimination algorithm requires storage proportional

2to n . The mr algorithm uses storage proportional to n

plus storage required to compute Ax. Therefore, if Ax can

be computed with storage less than n2  the mr algorithm is

superior. For example, if A can be generated, then storage

is proportional to n.



-9.4-

For sparse matrices, the storage required by the Gauss

elimination algorithm depends critically on the structure of

2
A and may vary from n to n . On the other hand, the

storage of the mr algorithm is always proportional to n.

III*1 ~ ~ i pII.IrI"
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10. OPEN PROBLEMS

In this paper we studied optimal algorithms for the so-

lution of Ax = b using the information operator Nk(Ab) =

[b, Ab,...,A kb]. We have focused on this information

operator because it is widely used in practice and because

it is susceptible to a very thorough analysis. It would of

course be desirable to generalize results of this paper to

more general information operators. Until this is accom-

plished we won't know if Nk(Ab) is "optimal' information.

For instance, let

(10.1) Nk(A,b) = [b, Az1 ,Az2 .... AzkJ

where z = zi(b , AzI .... Azi i) for i=l, 2,...,k. That

is, we still compute the matrix-vector multiplications

but now the vector zi is an arbitrary function of the pre-

viously computed information. For information (10.1) we can

generalize the definition of the optimal matrix and class in-

dices in an obvious way. We ask what is the optimal choice

of the zi , i.e., for which zi are the optimal indices mini-

mized. We propose

Conjecture 10.1

If F is orthogonally invariant then the optimal matrix

and class indices are minimized for the vectors zi = Ai-
1 b,

i-1, 2,..,k. That is, the information N k(A,b) = [b, Ab,....A kbj

is optimal in the class of information operators of the form

(10.1). 1

:1
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We now consider more general information operators than

(10.1). Let

(10.2) Ns (A,b) = (b, L1 (Ab), L2 (A;bu 1 ) ..... Ls (A;b,uI .... u ) 

where ui = L .,, ... ui_1 ), i=l, 2,.., s-i, and L is a

functional which depends linearly on the first argument. The

Li can depend nonlinearly on b and on the previously com-

puted information uI , u2 .... ui .1 1  Note that (10.2) is the

general form of adaptive linear information and (10.1) as well

as (2.2) are special examples of (10.2). We ask what is the

optimal adaptive linear information, i.e. what functionals LI

minimize the optimal matrix and class indices. In would also

be interesting to know the minimal value of s for which we can

find the exact solution of a linear system. From Rabin [72J we

can conclude that s : (n + 1) (n + 2)/2 - 1 with no restriction

on the class F.

We also want to pose a complexity problem. We showed

that for the information Nk(Ab) = [b, Ab, ..., Akb] there

exist algorithms which are optimal (or almost optimal) and

which have linear combinatory complexity. These two proper-

ties guarantee finding an c-approximation with minimal (or

almost minimal) complexity.

Let Ns (A,b) be an optimal adaptive linear information

of the form (10.2). Does there exist an almost optimal algo-

rithm using N (A,b) with linear combinatory complexity? or

conversely, is it true that if an information operator is

1.1'
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better that Nk(A,b) = tb, Ab,.., A kb], then the combinatory

complexity of an almost optimal algorithm cannot be linear?

We can establish one result for N (A,b). The functionals
s

Li in (10.2) must depend on b. Otherwise the information

N (A,b) does not supply enough knowledge to find an c-approxi-

mation. To show this assume that

(10.3) Ns (Ab) = [b, LI(A), L2 (Au I),.... Ls (A;u I ,*** u 5

where ui = Li(Aul, .... ui I ) is independent of b. As in (2.8),

let k(F) be the minimal value of s such that there exists an

algorithm which uses N s(A,b) and finds an c-approximation in

the sense of (7.1).

For simplicity we establish the desired result only for

the class F4 ' Without loss of generality we assume that

£ S P . (Otherwise the algorithm * (Ns (Ab)) = b yields an

c-approximation.)

Theorem 10.1

Let c p, F = F4 and p be arbitrary. There exists a

vector b such that

k(Fn (n + 1k(F 4 ) •

Proof

Let A = I + B where

(10.4) Li(B, U1 0.. ui_) - 0 i-, 2 ... s,

*1



-10.4-

and u i = Li (I, u u . i-). Note that (10.4) corresponds to s

homogenous linear equations in coefficients of B. Since B

is an nxn symmetric matrix, we have n(n+ 1)/2 unknowns.

If s < n(n+ 1)/2 then there exists a nonzero matrix B sat-

isfying (10.4). We can normalize B such that lIB Ii = p. De-

fine a vector b such that Bb = cb with c = ±p. Let

X = I - B. Then A E F 4 and Ns(A,b) = Ns(Ab). Let 0 = f#k }

be an algorithm and xk = Ok(Nk(A,b)). Let

11- Ii II AP(x k  -

a = max ji P H 11 AP a 11

where a = A-1b and A- 1 b. Then 1+ b,

U1Apall =( + c) P-i 1 1 b and HIAIf = (1 -c) p - . Let

Sxk= clb + x

where c= (xk,b) and x is orthogonal to b. Then

((I ± B)Px,b) = 0 and

II (I ± B)P(xk - b±c c I (l ± c) p 
- (1 +

Thus

a max ( c1 (1 + p) - 11, c (1- p) -i1) -- E

Since * is arbitrary, this proves that it is impossible to

find an c-approximation for a < n(n+ 1)/2. This completes the

proof. I

Note that for the class F4, we can recover the matrix

Au (akj) knowing a suitable chosen N (A,b) with s=n(n+l)/2.

lo
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